An Implicit Approximate Inverse Preconditioner for Saddle Point Problems

نویسندگان

  • SABINE LE BORNE
  • CHE NGUFOR
چکیده

We present a preconditioner for saddle point problems which is based on an approximation of an implicit representation of the inverse of the saddle point matrix. Whereas this preconditioner does not require an approximation to the Schur complement, its theoretical analysis yields some interesting relationship to some Schurcomplement-based preconditioners. Whereas the evaluation of this new preconditioner is slightly more expensive than the evaluation of standard block preconditioners from the literature, it has the advantage that, similar to constraint preconditioners, the iterates of the preconditioned system satisfy the constraint equations exactly. We will demonstrate the performance of the implicit approximate inverse preconditioner in the iterative solution of the discrete twoas well as three-dimensional Oseen equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete pivoting strategy for the $IUL$ preconditioner obtained from Backward Factored APproximate INVerse process

‎In this paper‎, ‎we use a complete pivoting strategy to compute the IUL preconditioner obtained as the by-product of the Backward Factored APproximate INVerse process‎. ‎This pivoting is based on the complete pivoting strategy of the Backward IJK version of Gaussian Elimination process‎. ‎There is a parameter $alpha$ to control the complete pivoting process‎. ‎We have studied the effect of dif...

متن کامل

A preconditioning technique for a class of PDE-constrained optimization problems

We investigate the use of a preconditioning technique for solving linear systems of saddle point type arising from the application of an inexact Gauss–Newton scheme to PDE-constrained optimization problems with a hyperbolic constraint. The preconditioner is of block triangular form and involves diagonal perturbations of the (approximate) Hessian to insure nonsingularity and an approximate Schur...

متن کامل

Uzawa type algorithms for nonsymmetric saddle point problems

In this paper, we consider iterative algorithms of Uzawa type for solving linear nonsymmetric saddle point problems. Specifically, we consider systems, written as usual in block form, where the upper left block is an invertible linear operator with positive definite symmetric part. Such saddle point problems arise, for example, in certain finite element and finite difference discretizations of ...

متن کامل

Preconditioning of Saddle Point Systems by Substructuring and a Penalty Approach

The focus of this paper is a penalty-based strategy for preconditioning elliptic saddle point systems. As the starting point, we consider the regularization approach of Axelsson in which a related linear system, differing only in the (2,2) block of the coefficient matrix, is introduced. By choosing this block to be negative definite, the dual unknowns of the related system can be eliminated res...

متن کامل

A projection preconditioner for solving the implicit immersed boundary equations

This paper presents a method for solving the linear semi-implicit immersed boundary equations which avoids the severe time step restriction presented by explicittime methods. The Lagrangian variables are eliminated via a Schur complement to form a purely Eulerian saddle point system, which is preconditioned by a projection operator and then solved by a Krylov subspace method. From the viewpoint...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010